Outline of Mining and Industrial Safety Technology and Training Innovation (MISTTI) Tasks 1-5

Task 1 - Management/Administrative Core (including Project Evaluation)
1.1 –Provide support for project tasks with budgeting and accounting, personnel, progress reports, evaluation, public relations, logistical support, computer/information technology support, and other project management.
1.2 - Ascertain to what degree and with what measurable criterion each MISTTI task is relevant (focused on meaningful topics) and having or showing potential for significant impact to improve health and safety practices in the mining industry.

Task 2 - Worker Safety Training Research Plan Objectives
2.1 – Investigate and analyze mine safety training need
2.2 - Design and develop innovative training modules to address mine safety training needs
2.3 - Design evaluation procedures and begin to evaluate the effectiveness of the mine safety training modules developed

Task 3 Mine of the Future Objectives
3.1 - Explore potential strategies designed to provide safer mining conditions for workers by minimizing exposure to hazardous site conditions while working at mountain top reserves. By utilizing a Mine of the Future model, the project task will focus on recommendations that may be implemented in mountaintop mining to create a safer working environment for miners and aid the coal industry in meeting all regulatory mandates
Work began on the formation of a coal industry contact group to support the project activities of Subtask 3.1.
3.2 - Develop a technology that will provide mine impoundment inspectors and regulatory agencies with improved field inspection methodology, accurate inspection records, verification of documentation methods, and a historical record keeping system that can assist in dam inspection and lead to improved mine impoundment safety.
Equipment for the completion of the project is in the process of being purchased.
Two impoundment sites were selected for this subtask.
3.3 – Develop resources to predict potentially flooded mine breakout locations and map such locations on a priority-based scale.
Work on Subtask 3.3, was begun with initial mapping of mine pools and potential breakout points.
3.4 - Demonstrate a mobile mine scout capable performing tasks specific to mine rescue, mine safety, and next-generation training tools.
Within Subtask 3.4, the groundwork for development of the mobile scout concept was laid including activities related to
1) Researching and documenting mine rescue practices for the design and creation of a mine rescue robot interface;

2) Establishing communications with mine rescue experts from the government, mine rescue teams, rescue trainers, and a commercial service company that performs robotic underground inspections;
3) Selecting and collecting data from relevant 3D and image based robot sensors for characterization analysis; and 4) Establishing a methodology and baseline data for characterization of robot sensors.
3.5 - Identify strategies to address issues related to the merger of environmental, planning, and production challenges at multiple-seam, co-located, and proximal mine sites.
Subtask 3.5 involved continued activities by project staff to analyze the conditions related to the Upper Big Branch mine disaster environment and a review of geologic and engineering approaches related to proximal mine safety and health. Discussions and consultations were held with representatives from natural gas and oil mining industries; officials from MSHA, West Virginia Department of Natural Resources, and the West Virginia Office of Miners’ Health Safety and Training; staff from CONSOL Energy.

Task 4 International Mining Health and Safety Symposium (IMHSS) Objectives
4.1 - Convene technology developers; equipment manufacturers; federal government officials; state government officials; international representatives; organizations representing the mining industry and community; miners and miners’ representatives; and others to explore, discuss, and analyze the development, approval, and adoption of state-of-the-art technologies and mining methods.
4.2 - Provide opportunities for an open exchange of ideas and information among stakeholders with the ultimate goal of improving mine safety and health environments.
4.3 - Update stakeholders on new developments related to mining safety and health laws and legislation.

Task 5: Mine Escape and Rescue Technologies: Evaluating Mining Disaster Prevention Research and Strategies Related to the Recovery of Trapped Miners
5.1 - Investigate, collect, and disseminate information and research related to mine and escape technology strategies which have been successfully employed in the past or could be utilized in the future to provide a safer working environment for miners. Included in these activities will be an investigation of disaster prevention technologies research related to coal dust, methane gas, and mine ventilation issues.
5.2 - Evaluate currently employed disaster prevention systems in U.S. underground coal mines and current regulations/procedures especially related to mine ventilation, methane gas control, and the removal and/or control of coal mine dust. Of particular interest is the use of atmospheric monitoring systems, rock dusting, ventilation approaches, methane detection and monitoring and methane drainage technologies. Current technologies will be reviewed for their capabilities related to disaster prevention, to identify current equipment manufacturers, and to identify potentially new/alternative equipment.

5.3 - Review and analyze active and present coal dust controls and will examine new technology capable of monitoring gas and dust levels. Central monitoring systems used both domestically and internationally will also be examined as well as an analysis of regulatory structures pertaining to gas and dust ventilation procedures and requirements.
Table 1.1. Comparing Knowledge-for-Action Theories

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge utilization</td>
<td>Intersection of science and philosophy</td>
<td>Research knowledge</td>
<td>Instrumentally Conceptually</td>
<td>Time Resources, Support</td>
<td>Many meanings of use,</td>
<td>Value linked to meaning of use by intent,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Symbolically As process</td>
<td>Leadership, Politics</td>
<td>nonuse, and misuse</td>
<td>stakeholder, and context</td>
</tr>
<tr>
<td>Diffusion</td>
<td>Rural sociology and communication</td>
<td>Innovation</td>
<td>Innovation is communicated</td>
<td>Innovation characteristics</td>
<td>Spread</td>
<td>Outcomes link to adoption curve Innovation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>through channels over time</td>
<td>Social system Time</td>
<td></td>
<td>may be adapted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>among members of a social</td>
<td>Communication channels</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation</td>
<td>Political science and public administration</td>
<td>Policy Program</td>
<td>Top down</td>
<td>Policy Context, Stakeholders, Politics, power Values Administration</td>
<td>Sociopolitical factors, Feasibility</td>
<td>System influences Value transparency Contribution Process matters</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bottom up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Democratic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Networked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer</td>
<td>Science and technology</td>
<td>Learning Technology Policy</td>
<td>Mechanisms such as training,</td>
<td>What moves, Mechanism</td>
<td>Direction of movement,</td>
<td>Initial and final what are comparable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>implementing, diffusing, or</td>
<td></td>
<td>Comparability of contexts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>marketing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Translation</td>
<td>Linguistics and communication</td>
<td>Research products or syntheses</td>
<td>Communication Ongoing interaction and exchange</td>
<td>Stakeholders Politics, power Commitment Capacity Communication</td>
<td>Language</td>
<td>Sustain stakeholders, Informed decisions, Outcome link</td>
</tr>
</tbody>
</table>

(Ottoson, 2009, p. 10)
Logic Model

A
Analysis of Strategic Goals and Objectives
Driving Current Program
Assessment of NIOSH process to select program goals, evaluation of goals selected by NIOSH

B
Review and Assessment of Inputs
Planning: surveillance and intervention data; stakeholder inputs
Production: intra- and extramural funding, staffing, physical facilities, management structure

C
Review and Assessment of Activities
Surveillance, health-effect research, intervention research, health-services and other research, technology transfer activities

D
Review and Assessment of Outputs
Publications, reports, databases, tools, methods, guidelines, recommendations, patents

E
Review and Assessment of Intermediate Outcomes
Public policy impact, training/education, self-reported use and/or repackaging by stakeholders, implemented guidelines

F
Review and Assessment of End Outcomes
Reduced injuries, illnesses, exposures in the workplace

External Factors

Strategic Goals
SG-1 - Reduce respiratory diseases
SG-2 - Reduce noise/hearing loss
SG-3 - Reduce repetitive/cumulative musculoskeletal injuries
SG-4 - Reduce traumatic injuries
SG-5 - Reduce risk of mine disasters/Enhance safety emergency responders
SG-6 - Reduce ground failure fatalities/injuries
SG-7 - Determine impact of changing mining conditions, technologies, patterns of work

Outputs
OT-1 - Patent
OT-2 - Publication (excludes web documents)
OT-3 - Publication (Guidelines) – recommends policy/procedure
OT-4 - Web document
OT-5 - Software – computer program
OT-6 - Standards – approved by organization/agency
OT-7 - Training
OT-8 - Video – includes electronic videos
OT-9 - Workshop/Seminar/OIB (Open Industry Briefing)

Stakeholders
ST-1 - Academia
ST-2 - Community/Civic Organizations
ST-3 - Equipment Manufacturers
ST-4 - Government (Local, State, Federal)
ST-5 - Industry (Excluding Equipment Manufacturers)
ST-6 - International
ST-7 - Journalists and Media Professionals
ST-8 - Labor Organizations
ST-9 - Public Health and Advocacy Organizations